
www.manaraa.com

www.manaraa.com

The Islamic University of Gaza

Faculty of Engineering

Computer Engineering Department

 خىارمية باستخدام الأندرويد أنظمة تطبيقات في الخبيثة البرمجيات كشف

 المتشابهات

Malware Detection for Android Applications Using

SimHash Algorithm

By

Mahmoud Zuher Alkurdi

A Master of Science Thesis

Supervisors:

Dr.Aiman Abu Samra

Dr.Hasan Qunoo

June,2014

www.manaraa.com

www.manaraa.com

1

 الملخص

ِٕٙا يعخبش ِحٛس بحذ ٘اَ صذا , ٕ٘ان اٌىزيش ِٓ الأبحاد حطبيماث أٔظّت الأٔذسٚيذ ٚوشف اٌخبيذ أوٛادححٍيً

الاعخباس اٌخىٍفت اٌحٛسبيت, عذد ٘زٖ الأبحاد لابخىاس طشق صذيذة ٚخلالت ٌعًّ رٌه بطشيمت سٍٙت ٚدليمت ِع الأخز بعيٓ

 يّٕٛ بسشعت وبيشة ٚرٌه ٌخضايذ عذد حطبيماث أظّت الأٔذسٚيذ بشىً ضخُ ٚوبيش .

٘زٖ الأطشٚحت ححاٚي أْ حساُ٘ في حً ٘زٖ اٌّشىٍت عٓ طشيك أسخخذاَ طشيمت ِبخىشة ٚحذيزت ٌخّيض الأوٛاد اٌخبيزت حيذ

ٕفيز ِٚٓ رُ حماسْ ِا بيٓ حشابٙٙا ِع لاعذة بيأاث أوٛاد خبيزت ِىخشفت سابما عٓ طشيك حمَٛ بخحٍيً الأوٛاد ِا لبً اٌخ

 .(SimHash)اسخخذاَ خٛاسصِيت اسّٙا

لاِج ٘زٖ الأطشٚحت بخطبيك ٘زٖ اٌّفا٘يُ وضضء ِٓ بشٔاِش حّايت ِشٙٛس ٚيسخخذَ بشىً وبيش ِٚعخّذ ٌذٜ عذد ِٓ

(ٚرٌه ٌٍخأوذ ِٓ صلاحيت اٌفىشة ٚحُ ِماسٔت إٌخائش ٌخحٍيً الأوٛاد Androguardششواث بشِضياث أِٓ اٌبيأاث اسّٗ)

حيذ حُ اسخخذاَ ,ٚاٌّفاضٍت بيّٕٙا ِٓ حيذ دلت إٌخائش ٚاٌخىٍفت اٌحٛسبيت (Androguard) بيٓ اٌطشيمت اٌحذيزت ٚ

إٌخيضت أْ اٌطشيمت اٌّمخشحت في حطبيك لأصشاء ٘زٖ اٌّماسٔت ٚوأج 031عيٕت ِٓ اٌبشِضياث اٌخبيزت حخىْٛ ِٓ

ٌخحٍيً ٚاسخخشاس بصّاث اٌخطبيماث ِع حٛصيع Androguard % ِٓ اٌٛلج اٌزي حُ اسخٙلاوٗ في 01اٌشساٌت ٚفشث

ٚلج ِشابٗ ٚخطأ بسيط في دلت إٌخائش , ٚ٘زا يشصع ٌبساطت ٚسٌٙٛت اٌطشيمت اٌّسخخذِت ِٓ لبً اٌشساٌت ٌخحٍيً الأوٛاد

 ٚاسخخشاس اٌبصّاث.

.

www.manaraa.com

2

Abstract

Code analysis and Malwares detection for Android applications are considered as an

serious problem; there are many researches to apply new and creative techniques that can

detect Malwares with low computational cost. These researches are being rapidly grown

because of wide using and a huge number of new applications.

This thesis tries to attack this problem by presenting a new and creative method to analyze

static code and measure similarity with available dataset of known Malwares applications

using (SimHash) algorithm.

Thesis immigrate its idea to a well-known and wide officially used antivirus project, which

is considered as a part of famous antiviruses programs and called (Androguard). We apply

thesis idea in Androguard project to test its feasibility by making a comparison study

between it and modified Androguard; we used Malware dataset of 130 Android applications

for this research. As a result, proposed method saves about 70% of time with similar results

and time distribution behavior in compare with original Androguard and little scarification in

accuracy, this refer to simplicity of generating signatures and measuring similarity using

SimHash algorithm.

www.manaraa.com

3

Dedication

To my loving parents, family and to my fiancée (Alaa)

www.manaraa.com

4

Acknowledgement

I would like to acknowledge my thesis supervisors Dr. Ayman Abu Samra and Dr. Hasan

Qunoo for their guidance and valuable help; I would also to thank Dr.Moutaz Alazab in

Deaking University Australia for his advices and his valuable discussion around my work.

Finally I appreciate Ms. Milla Parkour researcher at Bugix–Security Research the owner of

Contgiodump blog for giving me permission for her Android Malwares dataset.

www.manaraa.com

5

Table of Contents

 1 .. الملخص

Abstract .. 2

Dedication .. 3

Acknowledgement ... 4

Table of Contents .. 5

List of Figures .. 7

List of Tables ... 8

1 Introduction .. 9

1.1 Topic Area .. 9

1.2 Research Question ...10

1.3 Significance ..10

1.4 Thesis Structure...11

1.5 Summary ..12

2 Background and Related Work ..13

2.1 Android System Architecture ..13

2.2 Android Application Fundamentals ..16

2.3 Android Malwares ..19

2.4 Android Malware Defense Mechanism ...23

2.5 Related Work ...24

2.6 Summary ..27

3 Research Tools ..28

3.1 Reverse Engineering ...28

3.2 Androguard ..29

3.3 Similarity Measurement by Compression ..31

3.4 Information Distance ..31

3.4.1 Compression Distance ...32

www.manaraa.com

6

3.5 SimHash Algorithm ..33

3.5.1 The Similarity Problem for SimHash ..34

3.5.2 SimHash Text Example ...35

3.6 Summary ..37

4 Methodology Evaluation and Analysis. ..38

4.1 Malware detection by SimHash algorithm ...38

4.2 Experiment 1: Comparison with Androguard.41

4.2.1 Experiment Environment: ..42

4.2.2 Experiment Inputs and Dataset ..42

4.2.3 Comparison between Androguard and SimHash.43

4.3 Experiment 2: Malware Detection. ..49

4.4 Summary ..52

5 Conclusion and Future Work ..53

6 References ..55

7 Appendices ..60

7.1 Appindex1: Androguard Code. ...60

7.2 Appendix 2: SimHash Code. ..84

7.3 Appendix 3: Test Code. ...85

www.manaraa.com

7

List of Figures

Figure ‎2-1: Android OS Architecture ...14

Figure ‎2-2: Lifecycle of an Activity and its Callback Method17

Figure ‎2-3: Total mobile Malware by platform [13] [‎18]21

Figure ‎2-4: Total Mobile Malware Sample in Database [‎31‎‎‎] 21

Figure ‎2-5: New Android Malwares [‎‎‎31] ..22

Figure ‎4-1: Androsim to Find Similarity Between Two .apk Programs40

Figure ‎4-2:SimHash To Find Similarity Between Two .apk Programs41

Figure ‎4-3 Contagiodump Dataset ..43

Figure ‎4-4: Similarity Measurements for 1.apk And Dataset by SimHash

and Androguard ..45

Figure ‎4-5: Time for Similarity Measurements for 1.apk and Dataset by

SimHash and Androguard ...46

Figure ‎4-6: Similarity Measurements for 3.apk and Datset by SimHash and

Androguard ...46

Figure ‎4-7: Time for Similarity Measurements for 3.apk and Dataset by

SimHash and Androguard ...46

Figure ‎4-8: Histogram for SimHash and Androguard (1)48

Figure ‎4-9: Histogram for SimHash and Androguard (2)48

Figure ‎4-10: Tested Application from Google Play Store50

Figure ‎4-11: Similarity Measurement for Tested Application with Malware

 51

Figure ‎4-12: Similarity Measurement for Tested Application without

Malware ...51

file:///C:/Users/MahmoudZuher/Desktop/Malware%20Detection%20System%20for%20Android%20Applications%204.docx%23_Toc391895868

www.manaraa.com

8

 List of Tables

Table ‎2-1: Lifecycle of an Activity and its Callback Method Describtion ..18

Table ‎4-1: Similarity Measurement, Androguard and SimHash44

Table ‎4-2: Dataset Information ...49

Table ‎4-3:Tested Application Information ...50

Table ‎4-4: Experiment Parameters and Output ..51

www.manaraa.com

9

1 Introduction

1.1 Topic Area

Smartphones are used everywhere, by everyone, for all purposes, it is the latest

technology trend of the 21st century. Today’s social life requires us to stay in always

connection with internet by smartphones, also smartphones are being rapidly integrated into

enterprises, government agencies, and even the military, In fact smartphones are used by all

people around the world from all ages and for various usage. All of these are reasons for the

wide development of smartphones hardware and software.

Smartphones are based on several platforms; one of the most popular is Android. The

popularity of Android has enabled the application marketplace to grow dramatically, the

black market presence has also grown rapidly where paid applications are modified for free

download and from untrusted websites or stores, smartphone user may exposed to various

information security threats when he uses his phone, these threats can disrupt the operation of

the smartphone, and transmit or modify the user data. For these reasons, Android applications

must guarantee privacy and integrity of the information they handle.

There are several countermeasures and researches to guarantee privacy and integrity of apps

by detecting and preventing Malware threat in mobile devices some of these are signature

based antivirus scanners which efficiently detect known Malwares, others depends on

detection and classification method in which they classify source code to detect Malware ,

even if it has no background of mobile applications.

These countermeasures and researches are different in their accuracy and mobile resources

consumption and there are a lot of researches which try to solve these problems.

www.manaraa.com

10

1.2 Research Question

Android platform is the most popular among Malwares designers. Because of Android

Malwares fast growth, we need to develop effective solutions. General works to Android

Malwares are currently focused on known antivirus scanners which efficiently detect known

Malwares. [‎7]

Android Malware detecting using static analysis can provide a comprehensive view, it is still

subjected to high cost in environment, So the question is how to detect unknown Malware by

rephrased method without high computation cost??.

1.3 Significance

There is a rising danger associated with Malware applications at mobile devices, so the

problem of detecting such Malwares is an interesting topic, Machine Learning based system

is good idea for Malware detection on Android applications, this technique will be used on

static features that are extracted from Android’s application files. Each application in

Android is packaged in an .apk archive which is similar to standard Java .jar files and

comprise of both code and resources. Android .apk files encapsulate valuable information

that can help in understanding applications behavior. The information can be collected by

reverse engineering tools, it includes requested permissions, framework methods called up by

the application, also extracts the information e.g., requested permissions, Intent messages

passing, etc.) from each application’s manifest file.

In this research a new model of Android Malware detection will be presented, this model

depends on extracting features from .apk file by generating a Hash code (SimHash) for its

reversed code and its Manifest .xml file, this Hash code will be used for similarity

www.manaraa.com

11

measurement to detect application behavior by comparing it with a dataset of Malwares

applications, modified method were compared with well-known application used for the

same purpose , called Androguard which is complete tool programmed by Virus Total group

for antiviruses purposes, This tool uses multifunction for code analysis and features

extraction and Malware detection . A comparison study has been done on a training data

collected from Malware dataset. As a result research modified Androguard method saves

70% of time compared with Androguard tool with result similar to it. This refers to using

SimHash instead of normal compression to measure similarity, and saving the time of

analyzing reverse code.

1.4 Thesis Structure

This thesis is organized as follow:

Chapter 1; Introduction: In this chapter thesis provides an introduction about thesis

problem, questions and significance, this chapter describes why we choose this title for thesis

and the idea of proposed solution.

Chapter 2; Background and Related Work: This chapter provides a background about

Android system, application and programming. It also talks about Malwares in general and

Malware in Android applications, at the end of this chapter there is a group of related work in

the same topic of this thesis.

Chapter 3; Research Approach and Tools: This chapter describes in theoretical view the

most important used tools in this thesis; it provides readers with description about algorithms

and used applications.

www.manaraa.com

12

Chapter 4; 4 Methodology Evaluation and Analysis.: Here readers can show the used

methodology for thesis, and how we prove the feasibility of our idea, this chapter also

provides details about experiments and it results, in addition it provides more details about

comparison study between thesis tools and Androguard.

Chapter 5; Conclusion and Future Work: A complete conclusion has been written in this

chapter; also we talk about future work in related to his topic.

Chapter 6; References: this chapter is a list of all sources associated with thesis.

Chapter7; Appendices: In this chapter author attaches used codes and his modifications.

1.5 Summary

As a summary of this chapter we can say that today life depends on latest technologies

which provide fast and available services for its users, smartphones are one of these

technologies, it is used everywhere, by everyone, for all purposes. The wide use of

smartphones applications leads for wide growth in Malwares applications which aims to

threat users, This thesis tries to solve the problem of high cost Malware detection by

providing a new method which saves computation cost by using SimHash algorithm .As a

result research modified method save 70% of time comparing with compared (Androguard)

tool with result similar to it. This refers to using SimHash instead of normal compression to

measure distance and saving the time of analyzing reverse code.

www.manaraa.com

13

2 Background and Related Work

The motivation of this chapter is to explain the concept of Android. This Chapter starts

with, a short introduction into Android architecture and applications. In Section 2.1 a

summarized description of Android operating system will be provided, Section 2.2 will talks

about Android applications fundamentals, Section 2.3 is a brief summary of Android

Malwares types and methods of detection, Section 2.4 summarizes some related work in the

field of Malware detection tools. Finally section 2.5 is Summary for chapter.

2.1 Android System Architecture

Android is a new open source mobile platform that was designed by Google .Android

applications utilized advanced hardware and software to bring benefits and value to its users.

The architecture of Android is implemented as a software stack, customized for mobile

devices. Figure 2-1 shows some of the most important components of this stack [‎5].

The core of the Android platform is a Linux kernel. The kernel’s responsible for handling

device drivers, resource access, memory process, power management and other typical OS

duties. The kernel also acts as an abstraction layer between the hardware and other software

stack.

On top of the kernel are several native C/C++ libraries. Most of the application framework

access these core libraries through the Dalvik Virtual Machine DVM, which can be seen as

a gateway to the Android platform. This access is based on Java APIs that are thin wrapper

classes around the native code using the Java Native Interface.

www.manaraa.com

14

Figure ‎2-1: Android OS Architecture

Programmers develop end user applications on top of the main libraries in the application

framework which provide access to resources management [‎3], features like.

 Activity manager: manages the lifecycle of an application as applications are started,

suspended, resumed or destroyed see Figure 2-2 and Table1, This also provides a

navigation stack for the graphical views as the user is navigating through the different

views within an application.

 Content providers: enables applications to share its own data and access phone data

such as contacts and SMS entries.

 Resource manager: provides access to resources outside code such as strings, layout

XML files and graphics.

 View system: access to views that can be used to build the application and include

buttons, lists, grids etc.

www.manaraa.com

15

 Telephony manager: information about telephony services on the device.

Applications can also use this manager to determine services and states and access

some subscriber information. This also enables the possibility for applications to

register as listeners to receive changes of the telephony state.

 Package manager: access information related to the packages installed on the

device.

 Location manager: access to the system location services. The services allow

applications to obtain information about geographical location.

The Android software development kit supports most of the Java SE except for the AWT

and Swing UI components, thus making almost all Java SE libraries available compared to

J2ME which is very stripped down. Included in the SDK is an emulator to run, debug and

test end-user developed applications. The emulator acts like most of the features of a real

device except some limitations regarding camera and video capture, headphones, battery

simulation and Bluetooth. The emulator is based on Quick Emulator QEMU which enables

several operating systems to be executed on one machine and under different architectures.

The SDK also contains several tools to assist developers, the most significant is Android

manages virtual devices AVDs, projects and installed components on a SDK.

The Android Virtual Device AVD is an emulator configuration that enables modeling of an

actual device by defining hardware and software options that are then emulated. These

options include: mapping to a system image, hardware features and dedicated storage area for

simulating a SD card that contain user data. The system image contains the version specific

Android implementation that includes the application framework and DVM.

www.manaraa.com

16

2.2 Android Application Fundamentals

The four essential building blocks of an application are; Activities, Services, Content

providers and Broadcast receivers [‎5].

 Activity: Represents a single screen in the user interface. Users implement this

by sub classing the Activity class and implementing necessary lifecycle callbacks,

see Figure 2-2 and Table 2-1.

 Service: A component that runs in the background that is not a user interface. A

service is typically started by an Activity component but can be started by other

components too.

 Content provider: Manages shared application data. This data is saved in the file

system, SQLite3 database or other persistent storage location. Through this

component other applications can access data to perform queries or make

modifications if the content provider allows it. Content providers are accessed via

Content Resolver objects. Other ways of storing data is using Shared Preferences that

write a key, value pair to a XML file.

www.manaraa.com

17

 Broadcast receivers: Each application must have an AndroidManifest.xml file

which provides information about the application to the Android system. and sending

Figure ‎2-2: Lifecycle of an Activity and its Callback Method

broadcasts which are launched using asynchronous messages, Intents. Intent is an abstract

description of an operation to perform. These messages contain information about action and

data to operate on.

www.manaraa.com

18

Table ‎2-1: Lifecycle of an Activity and its Callback Method Describtion

Method Description Killable? Next

onCreate() Called when the activity is first created. This is where you

should do all of your normal static set up: create views, bind

data to lists, etc. This method also provides you with a

Bundle containing the activity's previously frozen state, if

there was one.

Always followed by onStart().

No onStart()

onRestart() Called after your activity has been stopped, prior to it being

started again.

Always followed by onStart()

No onStart()

onStart() Called when the activity is becoming visible to the user.

Followed by onResume() if the activity comes to the

foreground, or onStop() if it becomes hidden.

No onResume()

or onStop()

onResume() Called when the activity will start interacting with the user.

At this point your activity is at the top of the activity stack,

with user input going to it.

Always followed by onPause().

No onPause()

onPause() Called when the system is about to start resuming a previous

activity. This is typically used to commit unsaved changes to

persistent data, stop animations and other things that may be

consuming CPU, etc. Implementations of this method must

be very quick because the next activity will not be resumed

until this method returns.

Followed by either onResume() if the activity returns back to

the front, or onStop() if it becomes invisible to the user.

Pre-

HONEYCO

MB

onResume()

or

onStop()

onStop() Called when the activity is no longer visible to the user,

because another activity has been resumed and is covering

this one. This may happen either because a new activity is

being started, an existing one is being brought in front of this

one, or this one is being destroyed.

Followed by either onRestart() if this activity is coming back

to interact with the user, or onDestroy() if this activity is

going away.

Yes onRestart()

or

onDestroy()

www.manaraa.com

19

Method Description Killable? Next

onDestroy() The final call you receive before your activity is destroyed.

This can happen either because the activity is finishing

(someone called finish() on it, or because the system is

temporarily destroying this instance of the activity to save

space. You can distinguish between these two scenarios with

the isFinishing() method.

Yes nothing

Each application is compiled into an Android package with the APK file extension which is

basically a zip archive. This package contains the compiled code, resources and additional

data. This single file is considered an application ready to be installed on a device.

Some of the files that are included are AndroidManifest.xml described classes.dex which

contain the classes compiled in Dalvik Executable DEX format understandable by DVM to

run the application.

DVM is a register based virtual machine that executes the applications on the platform by

interpreting the DEX file containing the compiled classes. The generated Java class files are

transformed into the DEX file, however this does not contain Java bytecode, but an

alternative instruction set used by the DVM. The Dalvik bytecode assigns for example local

variables to any of the available register and the opcodes manipulate directly the registers

instead of accessing elements on the program stack.

2.3 Android Malwares

Malicious software is referred to as Malware, classified by its nature as either computer

virus, Trojan horse, worm, backdoor or rootkit. the most common Malware types [‎40] are :

www.manaraa.com

20

 Virus: Code that that inserts itself into another program and replicates, that is, copies

itself and infects other computers. Nowadays often used as a generic term that also

includes worms and trojans horses.

 Worm: Self-replicating Malware which copies itself to other nodes in a network

without user interaction using vulnerabilities. Worms do not attach themselves to an

application like a virus do.

 Trojan horse: Malicious program which masquerades itself as being an application.

Unlike viruses and worms, it does not replicate itself.

 Rootkit: Software that enables continued privileged access to a computer while

actively hiding its malicious activity from administrators by modifying the operating

system functionality.

 Backdoor: Specialized trojan horse that masquerades itself as an installed program to

enable remote access to a system and bypassing normal authentication. Additionally,

backdoors attempts to remain undetected.

 Spyware: Software that reveals private information about the user or computer

system to eavesdroppers.

 Bot: Piece of Malware that allows the bot master, i.e. the author to remotely the

infected system. A group of infected systems that are controlled are denoted as

botnets, instructed by the bot master to perform various malicious activity such as

distributed denial of services, stealing private information and sending spam.

The number of Android devices on the market is increasing and so is the number of users.

This attracts Malware authors to target Android devices with the intentions of economical

profit, stealing private etc... By reading the MacAfee threats report [‎31] of the first quarter

www.manaraa.com

21

of 2013 we found that Android Malwares have the maximum number in compare with

others platform as shown in Figure 2-3, so the total number of Malware samples in

MacAfee database is increasing also as shown in Figure 2-4 and Figure 2-5

Figure ‎2-3: Total mobile Malware by platform [13] [‎18]

Figure ‎2-4: Total Mobile Malware Sample in Database [‎31‎‎‎]

Mobile OS Market Share as of 2nd

quarter 2013

Android iOS

Windows Phone BlackBerry

Other

www.manaraa.com

22

Figure ‎2-5: New Android Malwares [‎‎‎31]

This ongoing threat emerges from the design of the Android system and Google’s policy on

releasing applications. The design to isolate applications from each other implies that an

application cannot steal or tamper with data belonging to another application. However,

using the permissions, an application can be granted access to information from other device

subsystems, for example, GPS system and database information such as SMS data and

contact entries. So it is still possible for a Malware application to operate within the isolation

and still conduct many different categories of attacks and violations, including resource and

data loss attacks. The Android permission policy may seem robust but the problem is that this

approach relies on the user making the decision whether the combination of permissions used

by an application is safe or not. Many users may not have the necessary technical knowledge

to make such decisions, and sometimes the users are simply lazy to conduct such inspections

when downloading applications.

www.manaraa.com

23

Android Malware can be distributed easily, compared to iOS applications where a rigorous

vetting is conducted. Additionally, Android applications can be released anywhere on the

web.

2.4 Android Malware Defense Mechanism

There are two types of code analysis that can be used to detect Malwares, Static Code

Analysis and Dynamic Code Analysis, The difference between these two types is that static

program analysis is the analysis of software that is performed without actually executing

programs while analysis performed on executing programs is known as dynamic analysis,

For Android Malware detection there exist many tools for both static and dynamics, below is

some of those tools:

 Static Analysis tools like IDA Pro, Mobile Sandbox, APKInspecto, and Androguard

which is widely used.

They use different tools to extract features and analyze byte code, this type of

analysis will be used for this thesis. More description will be discussed later in

chapter 3.

 Dynamic analysis tools like SandBox , Droidbox, and AndroidAuditTools used

after program execution, In fact dynamic analysis tools are used to analysis code,

results from those tools are used by Machine learning to classify application

behavior.

Actually there are a lot of Machine Learning tools that can be used for clustering large data

set of Android applications features and classify Malware application behavior.

www.manaraa.com

24

2.5 Related Work

One of the most important tools that can be used for application classification and Malware

detection is Machine Learning ML techniques on static features that are extracted from

Android’s application files, those features are extracted from Android’s Java byte-code i.e.,

.dex files . In [‎7] authors use this technique and their evaluation focused on classifying two

types of Android applications: tools and games, They performed an evaluation using a

collection comprising 2,850 games and tools. The results show that the combination of

Boosted Bayesian Networks and the top 800 features selected using Information Gain yield

will increase the accuracy level of classification.

 As it was mentioned before there are two types of Malware code analysis , one of them is

dynamic behavior analysis for Android Malware inspection which was presented In [‎41].

The system consists of a log collector in the Linux layer and a log analysis application. The

log collector records all system calls and filters events with the target application. The log

analyzer matches activities with signatures described by regular expressions to detect a

malicious activity. Signatures of information leakage are automatically generated using the

Smartphone IDs, e.g., phone number, SIM serial number, and Gmail accounts. They

implement a prototype system and evaluate 230 applications in total. The result shows that

the system can effectively detect malicious behaviors of the unknown applications.

 In [‎42] , automatic Malware detection mechanism for the Android platform based on the

results from sandbox tool is proposed. They extracted network spatial features of Android

apps and used independent component analysis to determine the resolution behavior of

Android Malware. The proposed mechanism can identify Android Malware automatically. A

public Android Malware app dataset and popular benign apps collected from the Android

www.manaraa.com

25

Market are used for evaluating the effectiveness of the proposed approach in terms of its

grouping ability and effectiveness in identifying Android Malware.

To identify possible information leakage, LeakMiner [‎35] applies a static taint analysis to

apps within Android market. The approach introduces three steps in identifying possible

leakages: first, apk files of Android apps are transformed to Java bytecode so that the

following analysis can directly work on Java bytecode. Besides, application metadata are

extracted from the manifest file of Android app. Then, LeakMiner identifies sensitive

information according to the extracted metadata. Finally, taint information is propagated

through call graph to identify possible leakage paths. By introducing multiple entry point call

graph, They can cover all the code of Android app. They choose a set of 1750 apps to

evaluate the accuracy of LeakMiner. LeakMiner can identify 145 real leakages in this app

set.

 A feature-based mechanism to provide a static analyst paradigm for detecting the Android

Malware proposed in [‎46]. The mechanism considers the static information including

permissions, deployment of components, Intent messages passing and API calls for

characterizing the Android applications behavior. In order to recognize different intentions of

Android Malware, different kinds of clustering algorithms can be applied to enhance the

Malware modeling capability. Furthermore, They leverage the proposed mechanism and

develop a system, called DroidMat which extracts the information e.g., requested

permissions, Intent messages passing, etc from each application’s manifest file. In addition,

it traces API calls for each component since API calls in different components may imply

different intentions. Then, it applies K-means algorithm that enhances the Malware modeling

capability. Finally, it uses kNN algorithm to classify the applications benign or malicious.

www.manaraa.com

26

In [‎14] In the first part the paper presented several algorithms to compare applications to

identify their similarities or differences. To do that they applied an original selected

compressor (Snappy) obtain a real usable tool to improve the time of comparison with good

results. With this similarity distance, they created a tool to determine whether a version of

application has potentially been pirated. Next they applied this technique to design a tool to

measure the efficiency of an obfuscator, and they demonstrated that there is a lack of proven

tools in this domain. In the final part they described a new algorithm to find and visualize

dissimilarities between versions of an application. The tools and the framework are open

source and can be downloaded on the website.

In [‎1] authors explain how to apply clustering techniques in Malware detection of Android

applications. they also use machine-learning techniques in auto detection of Malware

applications in the Android market. Their evaluation is given by clustering two categories of

Android applications: business, and tools. They have extracted 18,174 Android’s application

files in their evaluation using clustering. They extract the features of the applications from

applications’ XML-files which contains permissions requested by applications. The results

gives a positive indication of using unsupervised machine learning techniques in Malware

detection in mobile applications using a combination of the application information and xml

AndroidManifest files .

This research is based on the idea of enhancing the similarity measurement to find Malwares

by using SimHash algorithm which will be discussed later in chapter 3 and 4. This idea is

close to one presented in [‎32] but they use SimHash to enhance detection of clones codes in

large system which lead to unresolved bug or maintenance related problems by increasing

the risk of update anomalies, they investigate the effectiveness of SimHash, a state of the art

www.manaraa.com

27

fingerprint based data similarity measurement technique for detecting both exact and near

miss clones in large scale software systems they took an existing code cloning system and

improved the time performance by an order of magnitude using SimHash, and demonstrated

its feasibility for use with large systems such as the Linux Kernel. As well, they adapted

SimHash to a code cloning framework and demonstrated its viability for the clone detection

in large scale systems.

2.6 Summary

Background about Android system, application and programming has been discussed from

Android website we talk about Android architecture, components and activity life cycle; This

chapter also talks about Malwares in general and Malware in Android applications with more

details which has been extracted from McAfee 1
st
 Quarter 2013 report, at the end of this

chapter there is a group of related work in the topic of Android Malwares detection and

SimHash algorithm .

www.manaraa.com

28

3 Research Tools

Malwares for Android application are considered as one of the most growing problems,

so there must be a new techniques and tools to detect these Malwares. In fact there are many

antiviruses’ tools in today market to detect Malware using either static or dynamic analysis,

In this chapter a scientific view will be presented for algorithms and techniques used for

static code analysis .

3.1 Reverse Engineering

Reverse Engineering is a process of analyzing program code or software in order to test it

from any vulnerability or any errors. Reverse engineering is the ability to generate the source

code from an executable code. This technique is used to examine the functioning of a

program or to evade security bugs, etc. Reverse engineering can therefore be stated as a

method or process of modifying a program in order to make it behave in a manner that the

reverse engineer desires. Joany Boutet has quoted Shwartz, saying, “Whether it's rebuilding a

car engine or diagramming a sentence, people can learn about many things simply by taking

them apart and putting them back together again. That, in a nutshell, is the concept behind

reverse-engineering - breaking something down in order to understand it, build a copy or

improve it “ [‎24].

From the beginning of 2009 research scientists began proposes tools for reverse the

DalvikBytecode. One of them is “undX” tool which could generate a JAR file from an

Android APK file, then convert to JAVA using tools such as JAD and and JD-GUI. The

"undX' tool worked well with basic applications; but it posed many problems when dealing

www.manaraa.com

29

with complex Dalvik Bytecode. The Dex2Jar tool originated then. Dex2Jar does similar job

to “undX”; but this tool also has some issues while dealing with complex Dalvik Bytecode .

There are many programs which have reversed different applications of Android from byte

code to readable code in order to study the vulnerabilities like Androguard tools.

3.2 Androguard

Androguard is mainly a python tool done by VirusTotal project, VirusTotal is a subsidiary

of Google, is a free online service that analyzes files and URLs enabling the identification of

viruses, worms, trojans and other kinds of malicious content detected by antivirus engines

and website scanners. At the same time, it may be used as a means to detect false positives,

i.e. innocuous resources detected as malicious by one or more scanners. Virus Total mission

is to help in improving the antivirus and security industry and make the internet a safer place

through the development of free tools and services [‎44].

Androguard play mainly with:

 Dex/Odex Dalvik virtual machine , .dex disassemble, Decompilation .

 APK Android application .

 Android's binary xml.

 Android Resources.

Androguard has the following features :

 Map and manipulate DEX/APK format into full Python objects.

 Disassemble/Decompilation/Modification of DEX/APK format.

 Decompilation with the first native directly from dalvik byte codes to java source

codes dalvik decompiler .

https://sites.google.com/site/io/dalvik-vm-internals
https://play.google.com/

www.manaraa.com

30

 Access to the static analysis of the code basic blocks, instructions, permissions and

create analysis tool.

 Analysis a bunch of Android apps.

 Diffing of Android applications.

 Check if an Android application is present in a database.

 Open source database of Android Malware

 Reverse engineering of applications

 Transform Android's binary xml like AndroidManifest.xml into classic xml.

The most important feature that has been used in thesis is similarity measurement which will

be used later to detect Malwares after measuring distance between it and given clustered

datasets of Malwares families. Androguard uses Elsim project to measure distance between

two text codes of different Android applications, Elsim has an important tool which used to

measure similarity, this tool is called Androsim , This tool detects and reports identical

methods, similar methods, deleted methods, new methods and skipped methods.

Moreover, a similarity between 0.0 to 100.0 is calculated upon the values of the identical

methods and the similar methods. Androguard calculate the final values using text

compressor. It is more interesting because an understandable value related to the similarity

will be discovered.

Elsim uses Normalized Compression Distance NCD, Which is way of measuring the

similarity between two objects, either they are two documents, two letters, two

programs…etc. Such a measurement should not be application dependent or arbitrary. A

reasonable definition for the similarity between two objects is how difficult it is to transform

them into each other. Next Section will talk about measuring distance by compression.

http://code.google.com/p/androguard/wiki/Analysis
http://code.google.com/p/elsim/wiki/Similarity#Diffing_of_applications
http://code.google.com/p/androguard/wiki/DetectingApplications
http://code.google.com/p/androguard/wiki/DatabaseAndroidMalwares
http://code.google.com/p/androguard/wiki/RE
http://code.google.com/p/androguard/wiki/Usage#Androaxml

www.manaraa.com

31

3.3 Similarity Measurement by Compression

There are several concepts to measure similarity of strings or files. One of the most important

theoretical fundamentals is the Normalized Compression Distance NCD [‎19] ,Although there

are many known methods, that measure the similarity between two given data pieces with

specific content, such as image, text or audio files, most of them are highly specialized,

complex and work on high level aspects of the data. The idea behind the compression

distance is to measure closeness of any given files or strings without regarded of their

specific content or structure taking in mid process of fast and simple algorithms that work on

a very low level.

3.4 Information Distance

The concept of Information distance between two strings and can be defined as the length

of the shortest program that computes from and vice versa. This shortest program is in a

fixed programming language. For technical reasons one uses the theoretical notion of Turing

machines. Moreover, to express the length of one uses the notion of Kolmogorov

complexity which is a measure of the computability resources needed to specify the

object. So will be as define as shown below:

 { }.

The Kolmogorov complexity can be considered as an idealized measurement of the

informational quantity given in a string or file. Based on this idea the informational distance

of two strings could also be measured by consulting the concept. In doing so, we are talking

about Turing machines that are given the information of one string to resemble the other one.

The less different the two strings are, the less complex this task should be and therefore the

www.manaraa.com

32

less the size of the smallest Turing machine, that does the job. To formalize this thought, we

define the Normalized.

Normalized Information Distance of two strings ∑ as

 { }

 { }

where is the conditional Kolmogorov complexity, i.e. the size of a smallest Turing

machine, that, given y as input, generates on its output tape and then halts. The

normalization term { } is included to generalize the approach on parameters of

variable size and informational quantity. the minorizes all normalized functions in a

wide class of relevant distance functions, meaning, that if two strings are close according to

an aspect measured by one of these functions, they are also close according to the .

3.4.1 Compression Distance

Even if we want to accept the NID as a generalized measurement for informational distance,

there remains the problem of non-computability of One obvious real world

approximation to the is to see the Turing machines as a maximal possible compression

of the string . Therefore the size of the output which is the binary length of the file

compressed with compressor for example "gzip", "bzip2", "PPMZ", produces on input x

could be taken to approximate in the formula. So { } could be

approximated by { }, where is the concatenation of and . This

way it can be seen how good the compression algorithm can use the information given in one

string to better compress the other one and vice versa. By subtraction of min { } the

term approximates the remaining compressed size of the more complex string if the

www.manaraa.com

33

information in the other one was used. Therefore the term should be smaller, the more similar

the two strings are. Considered together, we define the Normalized Compression Distance as

 { }

 { }

Obviously there is no way to prove that this function approximates what would be seen as an

intuitive distance of file contents, like similarity of pictures or tunes, i.e. giving an absolute

and adequate universal and parameter free similarity metric. But the NCD summarize

distance functions up to a dedicated term, according to the quality of the approximation of

 by the chosen compressor.

3.5 SimHash Algorithm

Measuring similarity between two strings has many algorithms one of them is SimHash

algorithm which has been created by Moses Charikar [‎12] from Google. It can compare

easily between two strings, and by the way two datasets of any type, quickly and effectively.

SimHash use a fingerprint system, instead of comparing the texts directly, it will compare

their fingerprints, which is really more effective and usable in reality.

This chapter will offer a complete description of this algorithm which has been used next to

detect Malware in Android applications

www.manaraa.com

34

3.5.1 The Similarity Problem for SimHash

The similarity computing is not easy because recognize similar element that are not equals is

complex with a computer. To compare two things, the human brain create a list of criteria for

each item [‎17], SimHash will do the same, it will compare two texts using each word as a

crtieria that describe the text. In maths, we can sum up it as:

This is the Jaccard index. However, this index is not effective at all as it requires checking

for each element in A if there is an equal element in B to check for each word in the first text

if there is an equal word in second one.

SimHash is the process in which fingerprints will be created to compare the texts. Therefore,

 will be replaced by the comparison between their binary fingerprints, which is much

more effective. To generate those fingerprints, Moses Charikar's algorithm steps are:

1- Define a fingerprint size (for instance 32 bits)

2- Create an array V[] filled with this size of zeros

3- For each element in the dataset, create a unique Hash with md5, sha1

of any other Hash algorithm that give same-sized results

4- For each Hash, for each bit i in this Hash

If the bit is 1, we add 1 to V[i]

If the bit is 0, take 1 to V[i]

5- For each i

If V[i] >0, i = 1

If V[i] < =0, i = 0

http://en.wikipedia.org/wiki/Jaccard_index

www.manaraa.com

35

After that, fingerprint will be created which characterizes the text. Now, to compare two

fingerprints, you just have to compare two binary numbers: XOR logical will be used and

count the 1 in the result Hamming Distance.

We have 3 ones for 32 characters, so we have 3 differences on 32 elements : the estimation

of the difference is so the estimation of the similarity is

 a bit more than 90%.

3.5.2 SimHash Text Example

If we want to measure the similarity between two sentences bellow

1- "the cat in the tree is white"

2- "the man in the suit is happy"

First we extract text features and generate simple md5 32 Hash codes for each feature;

Note: In this example sentence words are considered as features. In thesis experiment

each 2 chars from sentence are considered as feature.

www.manaraa.com

36

Features Hash MD5 first 32bit

the a53794d2

cat 54b8617e

in ba8d2b94

the a53794d2

tree c0af77cf

is a2a551a6

white d508fe45

man 39c63ddb

suit 9cf5af27

happy 56ab24c1

As in algorithm each word will be converted to binary 32bit binary Hash code then all Hash

codes above will grouped in one Hash called SimHash code (for each bit if the number of 1

greater than number of zeros then output is one else output will be zero)

Word Binary Hash

the 10100101001101111001010011010010

cat 01010100101110000110000101111110

in 10111010100011010010101110010100

tree 10100101001101111001010011010010

is 10100010101001010101000110100110

white 1010101000010001111111001000101

 SimHash Code 10100000001101010001000010010010

www.manaraa.com

37

Word Binary Hash

the 10100101001101111001010011010010

man 00111001110001100011110111011011

in 10111010100011010010101110010100

suit 10011100111101011010111100100111

is 10100010101001010101000110100110

happy 01010110101010110010010011000001

SimHash Code 10110000101001010010010110000010

Then we find hamming distance which is number of one taken from the result of binary XOR

between SimHash code for each sentence which is equal to

10000100100000011010100010000=8 ones

So the distance will be 8/32 = 25% so the similarity =1-.25 =0.75 ~75%

3.6 Summary

This chapter describes in theoretical view of the most important used tools in this thesis;

First a complete description about Androguard project with its usage and features has been

provided, then a scientifically description about Information distance concept has been

discussed and additional information about Androguard information distance algorithms is

explained also which is called compression distance .Finally this chapter talks about

SimHash algorithm, its concept , usage and features with an example for more clear view .

www.manaraa.com

38

4 Methodology Evaluation and Analysis.

In this chapter a methodology, experiments and thesis proposed algorithm will be

discussed. In Section 4.1 thesis new method of measuring similarity between two Android

application and detect Malwares will be discussed and it will be compared with Androguard

tool, Section 4.2 discusses the first experiment with its input attributes and its results, Section

4.3 is the second experiment and its evaluation, . Finally section 4.5 is Summary for chapter.

4.1 Malware detection by SimHash algorithm

In this thesis we propose a new method which measures similarity between two Android

applications to detect Malware application by using output of Androguard as reverse

engineering tool and SimHash algorithm.

As we mentioned before Androguard is an open source project done by VirusTotal group this

project has many functions for Android application static code like reverse engineering,

Malware detection and similarity measurement tools.

SimHash algorithm [‎12] has been used to find the distance between two stings or two file by

converting them to Hash codes of 32 or 64 bit, the idea of SimHashing two string is to

convert similar strings to similar Hashes and then compare between two Hashes which makes

the process of comparison with low time and low resources consumption.

In our proposed method we make a static code analysis so the input will be .apk file which is

the setup file of Android application, the first step is to use Androguard “androlyze.py” and

“get_package()” tool to extract and analyze .apk file, Androlyze program has many

functions it could disassemble an Android application , it has “get_dex()” method which

return a content of dex code , compiled code by Dalvik machine for Android application. the

www.manaraa.com

39

return of this function has been used as the string input for SimHash algorithm.

“get_package()” which returns the content of manifest.xml file the file which control the

permission of Android programs and has a summarized information of all program activities

will also concatenating to string as an input.

In step two we use SimHash the generated .Dex , .XML from .apk files, the result of

hamming distance of those two Hashes will be the distance between applications.

Finally step three will use step one and two but with an existing database of Malware

application SimHash signatures, if the results are very closed which means it is more than the

threshold, then it will consider the input as Malware. If not it will consider this application as

legal and not worm or Malware application.

So proposed algorithm can be summarized as follow

1- Input .apk file

2- Use Androlyze. get_dex() and get_package() method to get content

of .DEX compiled code and .XML manifest file

3- SimHash .DEX and .XML for inputs

4- Measure similarity with exists Malware database signatures by using

hamming distance

5- If the output > threshold… input is Malware.

In fact Androguard has tools to measure similarity between Android applications like Elsim

or androsim program, this tool detects and reports the identical method, the similar methods,

the deleted methods, the new methods, and skipped methods as in Figure 4-1 below. It takes

www.manaraa.com

40

signature of each application and then adds it to database which will be used next to detect

similar applications and Malwares.

Figure ‎4-1: Androsim to Find Similarity Between Two .apk Programs

Androguard is an efficient tool and it is used by VirusTotal which consider one of the most

important groups that develop new strategies for antiviruses, but it has some disadvantages, it

takes a lot of time in RE process while generating application signature, especially for large

size applications. In our proposed algorithm we try to evade this disadvantage with results

similar to Androguard, So we have used little part of RE which analyze .DEX and .XML part

only and we use SimHash to generate signature of this application, it utilize time since the

signature will be with the same size and finding distance will be in very easy method by

hamming distance.

Our proposed method accuracy will not the same of Androguard tools, since it used to

analyze application completely in very complicated process which depends on may

www.manaraa.com

41

attributes, but we depend mainly on .DEX compiled code which contains the Malware

behavior and XML, this will make our results near or similar to the results from Androguard,

but we save a lot of time and resources as it will be seen next chapter. Figure 4-2 below

shows an example of output of thesis new method.

Figure ‎4-2:SimHash To Find Similarity Between Two .apk Programs

4.2 Experiment 1: Comparison with Androguard.

In this Section an experiment to compare thesis modified method with an existing widely

used tool Androguard will be explained to find and discuss advantages and disadvantages,

the experiments result will be presented and analyzed as shown below.

www.manaraa.com

42

4.2.1 Experiment Environment:

Androguard library has been installed on Ubuntu Linux based operating system which has

been setup as virtual machine run by oracle virtual box on Dell OptiPlex 9010 brand name pc

(CPU: Intel core i5-3470 @3.2GHz 4 CPUs,RAM:8G, OS: Windows 7 64bit) ,the virtual

machine setting was as follow:(Processor: 2CPU execution cap:100% and

Ram:4G,OS:Ubunto4.3) , Also our new program has been written on the same virtual

machine with python programming language and it has used some of libraries from

Androguard tools as shown in appendix.

4.2.2 Experiment Inputs and Dataset

In order to measure and evaluate proposed method, different experiment should be occurred

on a training data of Android application, Smartphone malicious applications can be

collected from several open source sites such as Contagion, Offensive and VXHeavens. In

this thesis training data has been collected from Contagiodump which provides smartphone

Malware that infects various smartphone platforms such as Android, iPhone, BlackBerry and

Windows mobile, Contagio mobile mini-dump is a part of

contagiodump.blogspot.com. Contagio mobile mini-dump offers an upload dropbox for you

to share your mobile Malware samples.

A complete dataset of different Malware Android applications (130 different Malware) has

been downloaded from Contagiodump, All experiments have been done on those

applications as will be shown in next Sections. Those applications are different in functions,

types, source and type some are business applications, games ,social and….etc., All

http://contagiodump.blogspot.com/

www.manaraa.com

43

applications have been downloaded from http://www.mediafire.com/?78npy8h7h0g9y link as

in Figure 4-3 shown below.

Figure ‎4-3 Contagiodump Dataset

4.2.3 Comparison between Androguard and SimHash.

To compare between Androguard and Modified Androguard with SimHash as a tool for

similarity measurement, we have to test two tools on different similarity processes,. First; We

have made pairing between all applications from downloaded dataset, about 130 applications

produce a number of 8257 measure similarity process measured by Androguard and SimHash

as shown in Table 4.1 below

http://www.mediafire.com/?78npy8h7h0g9y

www.manaraa.com

44

Table ‎4-1: Similarity Measurement, Androguard and SimHash

Similarity

Measurement Method

of comparison Total time(hours) Average time for

comparison (sec)

SimHash 8257 11 5

Androguard 8257 39 13

As shown from Table there are a big different in computation time for two methods our

proposed algorithm is faster than Androguard which takes about 3 time more than SimHash

tool, this was because of many reasons , the most important one is that complexity of

Androguard which make a lot of complicated process to find signature of Malware or

Android application, it uses Elsim tool which was discussed before, this tool analyze the

reversed code to find identical method, similar methods, deleted methods, new methods and

t skipped methods, this will take a lot of time in addition it uses NCD which was discussed

also before , to calculate the similarity of text, NCD takes a lot of time with [‎19]

complexity , In other hand our proposed algorithm do a little simple process after reverse

engineering process it easily SimHash the reversed code .DEX and .XML by using SimHash

algorithm then it use Hamming distance to calculate the similarity this will of course save

time with [‎12] complexity and memory and will generate signature in very easy

way.

After applying two algorithms we collect a very huge data of comparisons which will help us

to evaluate our modified method and compare it with Androguard. After generating data

from SimHash we found that all data are centralized between (75%-100%) so it is preferred

www.manaraa.com

45

to normalize data to be between (0%-100%) in order to compare it with Androguard. Figure

4-4 below so the comparisons process of random applications. As it shown from Figures ,

results are very close overall processes sometimes there are different but in small similarities,

but in general similarity distance are identical for values more the 70%, this indicates that

proposed method has a very good result near to Androguard but in small time, as shown

from time Figures below some processes takes about two minutes by Androguard and takes

little than one minutes by SimHash with the same similarity distance in both ways, this also

shows that proposed method are very efficient for time and resources saving .

Figure ‎4-4: Similarity Measurements for 1.apk And Dataset by SimHash and Androguard

0

20

40

60

80

100

120

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1.apk

simhash Androguard

00:00.0

00:43.2

01:26.4

02:09.6

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1.apk

Time Simhash Time Androguard

www.manaraa.com

46

Figure ‎4-5: Time for Similarity Measurements for 1.apk and Dataset by SimHash and Androguard

Figure ‎4-6: Similarity Measurements for 3.apk and Datset by SimHash and Androguard

Figure ‎4-7: Time for Similarity Measurements for 3.apk and Dataset by SimHash and Androguard

To study the time behavior of proposed method and to ensure its feasibility, A time

distribution model has been studied for the same experiment results, We have use SPSS

PASW statistics Release 18 in order to generate histogram model for collected data, In

statistics, a histogram is a graphical representation of the distribution of data. It is an estimate

of the probability distribution of a continuous variable and was first introduced in [‎38] A

histogram is a representation of tabulated frequencies, shown as adjacent rectangles, erected

0

50

100

150

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

3.apk

simhash Androguard

00:00.0

01:26.4

02:52.8

04:19.2

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

3.apk

Time Simhash Time Androguard

www.manaraa.com

47

over discrete intervals (bins), with an area proportional to the frequency of the observations

in the interval. The height of a rectangle is also equal to the frequency density of the interval,

i.e., the frequency divided by the width of the interval. The total area of the histogram is

equal to the number of data. The histogram output as in Figures below show that experiment

takes similar time distribution behavior for both method Androguard and SimHash, they act

as exponential distribution not as normal distribution this indicate that overall measurements

process are concentrate at period between 1-10 sec , for both Androguard and SimHash, but

it is noticed that SimHash has more distribution for that period between 1 and 30 sec that

major process are accrued at this time while Androguard has more distribution at long time

periods, this ensure the feasibility of our proposed method for time saving.

www.manaraa.com

48

Figure ‎4-9: Histogram for SimHash and Androguard (2)

Figure 4-8: Histogram for SimHash and Androguard (1)

www.manaraa.com

49

4.3 Experiment 2: Malware Detection.

The first experiment shows that thesis proposed algorithm saves a lot of memory and time

resources during the process of similarity measurement, in this experiment it is important to

show the ability of detecting a Malware by new method, so the input of this experiment will

be a real Malware injected application and the same application but without injection, the

goal is to detect the injected one by our algorithm.

First of all we use .apk downloaded dataset to generate a database of SimHash signatures,

then we insert a test Malware in order to find if it will be detected and if it will be similar to

another Malware.

The same process sequence will be used for Androguard which, and the result of two

algorithms will be compared.

Table ‎4-2: Dataset Information

Dataset source link http://contagiominidump.blogspot.com/

of applications 130

Types of application Games, social, education…etc.

Shared by Mila blog

We used angry birds cheat application as a test application, first we install it from Google

play as shown in image below, install this application form Google play insure that it it has

been inspected by Google static analysis tool,

http://contagiominidump.blogspot.com/

www.manaraa.com

50

Figure ‎4-10: Tested Application from Google Play Store

In other hand we download the same application but with Malware from contagion dump

blog, but it is not from dataset we have download before, We enter the two .apk applications

in to SimHash and Androguard to measure it similarity with data source elements, first the

Table ‎4-3: Tested Application Information

Application name Angry Bird cheats

Done By Merle Braley

Initiate date November 8, 2011

Type Entertainment

Descriptions :

You'll Learn Secrets that Most Players will Never Know.

When you install this app now, you can watch the Official Angry Birds Walk-throughs,

PLUS you'll learn about Golden Eggs, Angry Birds Cheats and Many More Secrets. This app

is for anyone who love to play Angry Birds!

www.manaraa.com

51

injected application has been detected by two algorithms since it takes score more than 80%

two times as shown in Figure 4-11 below

Figure ‎4-11: Similarity Measurement for Tested Application with Malware

Figure ‎4-12: Similarity Measurement for Tested Application without Malware

In second graph it is clear that all result are less than 20% which means that this application

is free of Malware.

Table ‎4-4: Experiment Parameters and Output

0

10

20

30

40

50

60

70

80

90

100

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

and- malware

sim-malware

0

10

20

30

40

50

60

70

80

90

100

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

sim

and

www.manaraa.com

52

Method Is injected (yes/no) Time (mm:ss)

Androguard Yes 34:59

Androguard No 32:34

SimHash Yes 14:24

SimHash No 10:18

Table shows that our proposed method takes time less than Androguard to generate database

of signatures and detect Malware this also insure the efficiency of our proposed algorithms

4.4 Summary

In this shows the used methodology for thesis, First we describe how we ran Androguard

project and how we modify it to use SimHash algorithm as build in tool, then we prove the

feasibility of idea by experiments. The first experiment compare between Androguard and

thesis model by applying two of them on a Malware data set, the results prove that proposed

method is faster than Androguard with similar results and time distribution. Finally the

second experiment detected a Malware application and compare detection evidence with

Androguard.

www.manaraa.com

53

5 Conclusion and Future Work

Today life activities for all people depend on latest technologies which provide fast and

available communication and production services, smartphones are one of those

technologies, it is used everywhere, by everyone, for almost purposes. The wide use of

smartphones applications leads for wide growth in Malwares applications which aims to

threat users.

Android is the most shared OS for smart phones and it has the biggest number of Malwares ,

In this thesis an Introduction about Android has been discussed from Android website we

talked about Android architecture , components and activity life cycle; Thesis talked about

Malwares in general and Malware in Android applications with more details which has been

extracted from McAfee 1st Quarter 2013 report , In addition this thesis summarized a group

of related work in the topic of Android Malwares detection and SimHash algorithm .

Our contributing was to solve the problem of high cost Android Malware detection by

providing a new modified method which saves computation cost using SimHash algorithm.

The research main idea is to enhance the similarity measurement to find Malwares in

Androguard tool by using SimHash algorithm. This idea is close to one presented in [‎‎32]

but they use SimHash to enhance detection of clones codes in large system which lead to

unresolved bug or maintenance related problems by increasing the risk of update anomalies.

We used SimHash as a part of known tool called Androguard which is mainly a python

tool done by VirusTotal project, VirusTotal is a subsidiary of Google, is a free online

service that analyzes files and URLs enabling the identification of viruses, worms, trojans

and other kinds of malicious content, Androguard uses normalized compression distance

www.manaraa.com

54

algorithm to measure similarity between reversed codes, We replace this algorithm with

SimHash algorithm which uses a fingerprint system, instead of comparing the texts directly,

it compared their fingerprints, which is really more effective and usable in reality.

To evaluate our idea we passed some experiments. The first experiment compared between

Androguard and thesis model by applying two of them on a Malware data set collected from

Contagiodump which provides smartphone Malware that infects various smartphone

platforms such as Android; A complete dataset of different Malware Android applications

(130 different Malware) has been downloaded from Contagiodump as a result research

proposed method saved 70% of time comparing with Androguard tool with same time

distribution and results similar to it. This refer to using SimHash instead of normal

compression to measure distance and saving the time of analyzing reverse codes. Finally the

second experiment detected a Malware application called angry bird and compared detection

evidences with Androguard.

As a future work enlarge the dataset by immigrate it with other existing Malwares datasets

will decrease the false detection. A complete modified Android model with SimHash

algorithm can be programmed and released for public users, increasing the dataset and tested

applications will be considered to find new model’s bugs. Also users feedback collection will

cause more enhancements. In other hand we can utilize the using of SimHash by changing

the feature extraction method which can consider the Android code and .xml syntax. Finally

changing the tools that used for reverse engineering and combine it with simHash for

measure similarity can also generate good results.

www.manaraa.com

55

6 References
1. Aiman A. Abu Samra, K. Y. (2013). Analysis of Clustering Technique in Android.

2013 Seventh International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing.

2. Akamasa Isohara, K. T. (2011). Kernel-based Behavior Analysis for Android

Malware Detection. IEEE Seventh International Conference on Computational

Intelligence and Security .

3. Android. (n.d.). Activities. Retrieved 1 23, 2014, from Android Developers:

http://developer.android.com/guide/components/activities.html

4. Android. (n.d.). Application Fundamentals. Retrieved 1 28, 2014, from Android

Developers.

5. Android. (n.d.). Introduction to Android. Retrieved 1 23, 2014, from Android

Developers: http://developer.android.com/guide/index.html

6. APKInspector. (n.d.). Retrieved 6 3, 2014, from APKInspector:

https://code.google.com/p/apkinspector/

7. Asaf Shabtai, Y. F. (2010). Automated Static Code Analysis for Classifying Android

Applications UsingMachine Learning. IEEE 2010 International Conference on

Computational Intelligence and Security.

8. B. Dixon, Y. J. (2011). Location based power analysis to detect malicious code in

Smartphones. 1st ACM workshop on Security and privacy in Smartphones and mobile

device.

9. B. Lague, D. P. (1997). Assessing the benefits of incorporating function clone

detection in a development process. Proc. ICSM.

10. Baker, B. S. (1999). A Program for Identifying Duplicated Code. CSS Interface Proc.

www.manaraa.com

56

11. Bryan Dixon, S. M. (2010). On Rootkit and Malware Detection in Smartphones.

IEEE International Conference on Dependable Systems and Networks Workshops

(DSN-W) .

12. Charikar, M. S. (2002). Similarity estimation techniques from rounding algorithms.

Proc. ACM STOC.

13. D.H. Shih, B. L. (2008). Security aspects of mobile phone virus: a critical survey.

ndustrial Management & Data Systems.

14. Desnos, A. (2012). Android : Static Analysis Using Similarity Distance. 45th Hawaii

International Conference on System Sciences.

15. DroidBox. (n.d.). Retrieved 6 3, 2014, from DroidBox:

https://code.google.com/p/droidbox/

16. F. Di Cerbo, A. G. (2011). Detection of malicious applications on android os. 4th

international conference on Computational forensics, IWCF’10.

17. Galopin, T. (n.d.). A web developer blog. Retrieved 3 3, 2014, from

http://titouangalopin.com/blog/2013/11/simhash-or-the-way-to-compare-quickly-two-

datasets

18. Gartner. (2014, 3 14). Gartner Says Smartphone Sales Grew 46.5 Percent in Second

Quarter of 2013 and Exceeded Feature Phone Sales for First Time. Retrieved 5 31,

2014, from Gartner: http://www.gartner.com/newsroom/id/2573415

19. Google. (n.d.). Androguard. Retrieved 3 2014, 4, from Google Code:

https://code.google.com/p/androguard/#Papers

20. Heloise Pieterse, M. S. (2012). Android Botnets on the Rise: Trends and

Characteristics. IEEE.

21. I. Santos, C. L. (2011). Collective classification for unknown malware detection. in

Proceedings of the 6th International Conference on Security and Cryptography

(SECRYPT).

www.manaraa.com

57

22. I. Santos, F. B.-P. (n.d.). Opcode sequences as representation of executables for data-

mining-based unknown malware detection. Information Sciences, in press.

23. IDA pro. (n.d.). Retrieved 6 3, 2014, from IDA pro: https://www.hex-

rays.com/products/ida/index.shtml

24. InfoSec, S. I. (2011). Reverse Engineering Of Malware On Android.

25. Ioannis Charalampopoulos, I. A. (n.d.). A Comparable Study employing WEKA

Clustering/Classification Algorithms for Web Page Classification.

26. J. Bergeron, M. D. (2001). Static detection of malicious code in executable programs.

In Proceedings of the Symposium on Requirements Engineering for Information

Security (SREIS’01), .

27. J. Cheng, S. W. (2007). SmartSiren: virus detection and alert for Smartphones. Proc.

International Conference on Mobile Systems, Applications and Services.

28. Justin Sahs, L. K. (2012). A Machine Learning Approach to Android Malware

Detection. IEE European Intelligence and Security Informatics Conference.

29. M. Henzinger. (2006). Finding near-duplicate web pages: a large-scale. Proc. SIGIR.

30. Mario Frank, B. D. (n.d.). Mining Permission Request Patterns from Android and

Facebook Applications.

31. McAfee. (2013). McAfee Threats Report: First Quarter 2013. McAfee .

32. Md. Sharif Uddin, C. K. (2011). On the Effectiveness of Simhash for Detecting Near-

Miss Clones in Large Scale Software Systems. IEEE 18thWorking Conference on

Reverse Engineering .

33. Mila. (2014, 3 10). Contagi Mobile. Retrieved from

(http://contagiominidump.blogspot.com.au/),

34. Mobile Sandbox. (n.d.). Retrieved 6 3, 2014, from Mobile Sandbox:

http://mobilesandbox.org/

www.manaraa.com

58

35. MoutazAlazab, V. L. (2012). Analysis of Malicious and Benign Android

Applications. IEEE 32nd International Conference on Distributed Computing

Systems Workshops .

36. NetApplications. (2014). Annual Survey Report.

37. P. Berthomé, T. F.-F. (2012). Repackaging Android Applications for Auditing Access

to Private Data. IEEE Seventh International Conference on Availability, Reliability

and Security.

38. Pearson, K. (1895). Contributions to the Mathematical Theory of Evolution.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences.

39. Rafael Fedler, C. B. (2012). Android OS Security:Risks and Limitations. Fraunh ofer

Research Institution for Applied and Integrate d Security.

40. Sharp, R. (2013). An Introduction to Malware. Technical university of Denmark .

41. Takamasa Isohara, K. T. (2011). Kernel-based Behavior Analysis for Android

Malware Detection. IEEE Seventh International Conference on Computational

Intelligence and Security.

42. Te-En Wei, C.-H. A.-M.-T.-J. (2012). Android Malware Detection via a Latent

Network Behavior Analysis. IEEE 11th International Conference on Trust, Security

and Privacy in Computing and Communications .

43. Thomas Dietterich, C. B. (2010). Introduction to Machine Learning Second Edition.

The MIT Press.

44. VirusTotal. (n.d.). VirusTotal. Retrieved 3 2014, 4, from about-VirusTotal :

https://www.virustotal.com/en/about

45. W. Enck, P. G.-G. (2010). Taintdroid: An information-flow tracking system for

realtime privacy monitoring on Smartphones. 9th USENIX conference on Operating

systems design and implementation.

www.manaraa.com

59

46. ZheMin Yang, M. Y. (2012). “LeakMiner: Detect information leakage on Android

with static taint analysis. IEEE Third World Congress on Software Engineering.

www.manaraa.com

60

7 Appendices

7.1 Appindex1: Androguard Code.

 Androguard,py

import sys, xml.dom.minidom, re, random, string, os

PATH_INSTALL = "./"

sys.path.append(PATH_INSTALL + "/core")

sys.path.append(PATH_INSTALL + "/core/bytecodes")

sys.path.append(PATH_INSTALL + "/core/bytecodes/libdvm")

sys.path.append(PATH_INSTALL + "/core/predicates")

sys.path.append(PATH_INSTALL + "/core/analysis")

sys.path.append(PATH_INSTALL + "/core/analysis/libsign")

sys.path.append(PATH_INSTALL + "/core/vm")

sys.path.append(PATH_INSTALL + "/core/wm")

sys.path.append(PATH_INSTALL + "/core/protection")

sys.path.append(PATH_INSTALL + "/classification")

import bytecode, jvm, dvm, apk, androconf, analysis, opaque

from androconf import error

VM_INT_AUTO = 0

VM_INT_BASIC_MATH_FORMULA = 1

VM_INT_BASIC_PRNG = 2

INVERT_VM_INT_TYPE = { "VM_INT_AUTO" : VM_INT_AUTO,

 "VM_INT_BASIC_MATH_FORMULA" :

VM_INT_BASIC_MATH_FORMULA,

 "VM_INT_BASIC_PRNG" : VM_INT_BASIC_PRNG

 }

class VM_int :

 """VM_int is the main high level Virtual Machine object to

protect a method by remplacing all integer contants

 @param andro : an L{Androguard} / L{AndroguardS} object to

have full access to the desired information

 @param class_name : the class of the method

 @param method_name : the name of the method to protect

 @param descriptor : the descriptor of the method

 @param vm_int_type : the type of the Virtual Machine

 """

 def __init__(self, andro, class_name, method_name, descriptor,

vm_int_type) :

 import vm

 method, _vm = andro.get_method_descriptor(class_name,

method_name, descriptor)

www.manaraa.com

61

 code = method.get_code()

 # LOOP until integers constant !

 iip = True

 while iip == True :

 idx = 0

 end_iip = True

 for bc in code.get_bc().get() :

 if bc.get_name() in _vm.get_INTEGER_INSTRUCTIONS() :

 if vm_int_type == VM_INT_BASIC_MATH_FORMULA :

 vi = vm.VM_int_basic_math_formula(

class_name, code, idx)

 elif vm_int_type == VM_INT_BASIC_PRNG :

 vi = vm.VM_int_basic_prng(class_name, code,

idx)

 else :

 raise("oops")

 for new_method in vi.get_methods() :

 _vm.insert_direct_method(

new_method.get_name(), new_method)

 vi.patch_code()

 end_iip = False

 break

 idx += 1

 # We have patched zero integers, it's the end my friend

!

 if end_iip == True :

 iip = False

 method.show()

class WM :

 def __init__(self, andro, class_name, wm_type) :

 if wm_type == [] :

 raise("....")

 import wm

 self._w = wm.WM(andro.get_vm(), class_name, wm_type,

andro.get_analysis())

 def get(self) :

 return self._w

class WMCheck :

 def __init__(self, andro, class_name, input_file) :

 fd = open(input_file, "rb")

 buffxml = fd.read()

 fd.close()

www.manaraa.com

62

 document = xml.dom.minidom.parseString(buffxml)

 w_orig = wm.WMLoad(document)

 w_cmp = wm.WMCheck(w_orig, andro, andro.get_analysis())

def OBFU_NAMES_GEN(prefix="") :

 return prefix + random.choice(string.letters) + ''.join([

random.choice(string.letters + string.digits) for i in range(10 - 1)

])

OBFU_NAMES_FIELDS = 0

OBFU_NAMES_METHODS = 1

class OBFU_Names :

 """

 OBFU_Names is the object that change the name of a field or a

method by a random string, and resolving

 dependencies into other files

 @param andro : an L{Androguard} object to have full access to

the desired information, and represented a pool of files with the

same format

 @param class_name : the class of the method/field (a python

regexp)

 @param name : the name of the method/field (a python regexp)

 @param descriptor : the descriptor of the method/field (a

python regexp)

 @param obfu_type : the type of the obfuscated (field/method)

(OBFU_NAMES_FIELDS, OBFU_NAMES_METHODS)

 @param gen_method : a method which generate random string

 """

 def __init__(self, andro, class_name, name, descriptor,

obfu_type, gen_method=OBFU_NAMES_GEN) :

 if obfu_type != OBFU_NAMES_FIELDS and obfu_type !=

OBFU_NAMES_METHODS :

 raise("ooops")

 re_class_name = re.compile(class_name)

 re_name = re.compile(name)

 re_descriptor = re.compile(descriptor)

 if obfu_type == OBFU_NAMES_FIELDS :

 search_in = andro.gets("fields")

 elif obfu_type == OBFU_NAMES_METHODS :

 search_in = andro.gets("methods")

 depends = []

 # Change the name of all fields/methods

 for fm in search_in :

 if re_class_name.match(fm.get_class_name()) :

 if re_name.match(fm.get_name()):

www.manaraa.com

63

 if re_descriptor.match(fm.get_descriptor()) :

 _, _vm = andro.get_method_descriptor(

fm.get_class_name(), fm.get_name(), fm.get_descriptor())

 old_name = fm.get_name()

 new_name = gen_method()

 # don't change the constructor for a .class

file

 if obfu_type == OBFU_NAMES_METHODS :

 _, _vm = andro.get_method_descriptor(

fm.get_class_name(), fm.get_name(), fm.get_descriptor())

 if _vm.get_type() == "JVM" and old_name

!= "<init>" :

 fm.set_name(new_name)

 depends.append((fm, old_name))

 elif obfu_type == OBFU_NAMES_FIELDS :

 fm.set_name(new_name)

 depends.append((fm, old_name))

 # Change the name in others files

 for i in depends :

 for _vm in andro.get_vms() :

 if obfu_type == OBFU_NAMES_FIELDS :

 _vm.set_used_field([i[0].get_class_name(),

i[1], i[0].get_descriptor()], [i[0].get_class_name(),

i[0].get_name(), i[0].get_descriptor()])

 elif obfu_type == OBFU_NAMES_METHODS :

 _vm.set_used_method([i[0].get_class_name(),

i[1], i[0].get_descriptor()], [i[0].get_class_name(),

i[0].get_name(), i[0].get_descriptor()])

class BC :

 def __init__(self, bc) :

 self.__bc = bc

 def get_vm(self) :

 return self.__bc

 def get_analysis(self) :

 return self.__a

 def analyze(self) :

 self.__a = analysis.VMAnalysis(self.__bc,

code_analysis=True)

 def _get(self, val, name) :

 l = []

 r = getattr(self.__bc, val)(name)

 for i in r :

 l.append(i)

 return l

www.manaraa.com

64

 def _gets(self, val) :

 l = []

 r = getattr(self.__bc, val)()

 for i in r :

 l.append(i)

 return l

 def gets(self, name) :

 return self._gets("get_" + name)

 def get(self, val, name) :

 return self._get("get_" + val, name)

 def insert_direct_method(self, name, method) :

 return self.__bc.insert_direct_method(name, method)

 def insert_craft_method(self, name, proto, codes) :

 return self.__bc.insert_craft_method(name, proto, codes)

 def show(self) :

 self.__bc.show()

 def pretty_show(self) :

 self.__bc.pretty_show(self.__a)

 def save(self) :

 return self.__bc.save()

 def __getattr__(self, value) :

 return getattr(self.__bc, value)

PROTECT_VM_AUTO = "protect_vm_auto"

PROTECT_VM_INTEGER = "protect_vm_integer"

PROTECT_VM_INTEGER_TYPE = "protect_vm_integer_type"

class Androguard :

 """Androguard is the main object to abstract and manage

differents formats

 @param files : a list of filenames (filename must be

terminated by .class or .dex)

 @param raw : specify if the filename is in fact a raw buffer

(default : False) #FIXME

 """

 def __init__(self, files, raw=False) :

 self.__files = files

 self.__orig_raw = {}

 for i in self.__files :

 self.__orig_raw[i] = open(i, "rb").read()

 self.__bc = []

www.manaraa.com

65

 self._analyze()

 def _iterFlatten(self, root):

 if isinstance(root, (list, tuple)):

 for element in root :

 for e in self._iterFlatten(element) :

 yield e

 else:

 yield root

 def _analyze(self) :

 for i in self.__files :

 #print "processing ", i

 if ".class" in i :

 bc = jvm.JVMFormat(self.__orig_raw[i])

 elif ".jar" in i :

 x = jvm.JAR(i)

 bc = x.get_classes()

 elif ".dex" in i :

 bc = dvm.DalvikVMFormat(self.__orig_raw[i])

 elif ".apk" in i :

 x = apk.APK(i)

 bc = dvm.DalvikVMFormat(x.get_dex())

 else :

 ret_type = androconf.is_Android(i)

 if ret_type == "APK" :

 x = apk.APK(i)

 bc = dvm.DalvikVMFormat(x.get_dex())

 elif ret_type == "DEX" :

 bc = dvm.DalvikVMFormat(open(i, "rb").read())

 else :

 raise("Unknown bytecode")

 if isinstance(bc, list) :

 for j in bc :

 self.__bc.append((j[0], BC(jvm.JVMFormat(j[1])

)))

 else :

 self.__bc.append((i, BC(bc)))

 def ianalyze(self) :

 for i in self.get_bc() :

 i[1].analyze()

 def get_class(self, class_name) :

 for _, bc in self.__bc :

 if bc.get_class(class_name) == True :

 return bc

 return None

 def get_raw(self) :

 """Return raw format of all file"""

www.manaraa.com

66

 l = []

 for _, bc in self.__bc :

 l.append(bc._get_raw())

 return l

 def get_orig_raw(self) :

 return self.__orig_raw

 def get_method_descriptor(self, class_name, method_name,

descriptor) :

 """

 Return the specific method

 @param class_name : the class name of the method

 @param method_name : the name of the method

 @param descriptor : the descriptor of the method

 """

 for file_name, bc in self.__bc :

 x = bc.get_method_descriptor(class_name, method_name,

descriptor)

 if x != None :

 return x, bc

 return None, None

 def get_field_descriptor(self, class_name, field_name,

descriptor) :

 """

 Return the specific field

 @param class_name : the class name of the field

 @param field_name : the name of the field

 @param descriptor : the descriptor of the field

 """

 for file_name, bc in self.__bc :

 x = bc.get_field_descriptor(class_name, field_name,

descriptor)

 if x != None :

 return x, bc

 return None, None

 def get(self, name, val) :

 """

 Return the specific value for all files

 @param name :

 @param val :

 """

 if name == "file" :

 for file_name, bc in self.__bc :

 if file_name == val :

 return bc

www.manaraa.com

67

 return None

 else :

 l = []

 for file_name, bc in self.__bc :

 l.append(bc.get(name, val))

 return list(self._iterFlatten(l))

 def gets(self, name) :

 """

 Return the specific value for all files

 @param name :

 """

 l = []

 for file_name, bc in self.__bc :

 l.append(bc.gets(name))

 return list(self._iterFlatten(l))

 def get_vms(self) :

 return [i[1].get_vm() for i in self.__bc]

 def get_bc(self) :

 return self.__bc

 def show(self) :

 """

 Display all files

 """

 for _, bc in self.__bc :

 bc.show()

 def pretty_show(self) :

 """

 Display all files

 """

 for _, bc in self.__bc :

 bc.pretty_show()

 def do(self, fileconf) :

 self.ianalyze()

 fd = open(fileconf, "rb")

 buffxml = fd.read()

 fd.close()

 document = xml.dom.minidom.parseString(buffxml)

 main_path = document.getElementsByTagName("main_path"

)[0].firstChild.data

www.manaraa.com

68

 libs_path = document.getElementsByTagName("libs_path"

)[0].firstChild.data

 if document.getElementsByTagName("watermark") != [] :

 watermark_item = document.getElementsByTagName(

"watermark")[0]

 watermark_types = []

 for item in watermark_item.getElementsByTagName("type"

) :

 watermark_types.append(str(item.firstChild.data)

)

 watermark_output = watermark_item.getElementsByTagName(

"output")[0].firstChild.data

 print watermark_types, "--->", watermark_output

 fd = open(watermark_output, "w")

 fd.write("<?xml version=\"1.0\"?>\n")

 fd.write("<andro id=\"androguard wm\">\n")

 wms = []

 for i in self.get_bc() :

 for class_name in i[1].get_classes_names() :

 wm = WM(i[1], class_name, watermark_types)

 fd.write(wm.get().save())

 fd.write("</andro>\n")

 fd.close()

 if document.getElementsByTagName("protect_code") != [] :

 import protection

 protect_code_item = document.getElementsByTagName(

"protect_code")[0]

 protection.ProtectCode([i[1] for i in self.get_bc()],

main_path + libs_path)

for item in document.getElementsByTagName('method') :

if item.getElementsByTagName(PROTECT_VM_INTEGER

)[0].firstChild != None :

if item.getElementsByTagName(PROTECT_VM_INTEGER

)[0].firstChild.data == "1" :

vm_type = INVERT_VM_INT_TYPE[

item.getElementsByTagName(PROTECT_VM_INTEGER_TYPE

)[0].firstChild.data]

VM_int(self, item.getAttribute('class'),

item.getAttribute('name'), item.getAttribute('descriptor'), vm_type

)

 if document.getElementsByTagName("save_path") != [] :

 self.save(main_path + document.getElementsByTagName(

"save_path")[0].firstChild.data)

 else :

 self.save()

www.manaraa.com

69

 def save(self, output_dir=None) :

 for file_name, bc in self.get_bc() :

 if output_dir == None :

 output_file_name = file_name

 else :

 output_file_name = output_dir + os.path.basename(

file_name)

 print "[+] [AG] SAVING ... ", output_file_name

 fd = open(output_file_name, "w")

 fd.write(bc.save())

 fd.close()

class AndroguardS :

 """AndroguardS is the main object to abstract and manage

differents formats but only per filename. In fact this class is just

a wrapper to the main class Androguard

 @param filename : the filename to use (filename must be

terminated by .class or .dex)

 @param raw : specify if the filename is a raw buffer (default

: False)

 """

 def __init__(self, filename, raw=False) :

 self.__filename = filename

 self.__orig_a = Androguard([filename], raw)

 self.__a = self.__orig_a.get("file", filename)

 def get_orig_raw(self) :

 return self.__orig_a.get_orig_raw()[self.__filename]

 def get_vm(self) :

 """

 This method returns the VMFormat which correspond to the

file

 @rtype: L{jvm.JVMFormat} or L{dvm.DalvikVMFormat}

 """

 return self.__a.get_vm()

 def save(self) :

 """

 Return the original format (with the modifications) into

raw format

 @rtype: string

 """

 return self.__a.save()

 def __getattr__(self, value) :

 try :

www.manaraa.com

70

 return getattr(self.__orig_a, value)

 except AttributeError :

 return getattr(self.__a, value)

 Adrodiff.py

import sys, xml.dom.minidom, re, random, string, os

PATH_INSTALL = "./"

sys.path.append(PATH_INSTALL + "/core")

sys.path.append(PATH_INSTALL + "/core/bytecodes")

sys.path.append(PATH_INSTALL + "/core/bytecodes/libdvm")

sys.path.append(PATH_INSTALL + "/core/predicates")

sys.path.append(PATH_INSTALL + "/core/analysis")

sys.path.append(PATH_INSTALL + "/core/analysis/libsign")

sys.path.append(PATH_INSTALL + "/core/vm")

sys.path.append(PATH_INSTALL + "/core/wm")

sys.path.append(PATH_INSTALL + "/core/protection")

sys.path.append(PATH_INSTALL + "/classification")

import bytecode, jvm, dvm, apk, androconf, analysis, opaque

from androconf import error

VM_INT_AUTO = 0

VM_INT_BASIC_MATH_FORMULA = 1

VM_INT_BASIC_PRNG = 2

INVERT_VM_INT_TYPE = { "VM_INT_AUTO" : VM_INT_AUTO,

 "VM_INT_BASIC_MATH_FORMULA" :

VM_INT_BASIC_MATH_FORMULA,

 "VM_INT_BASIC_PRNG" : VM_INT_BASIC_PRNG

 }

class VM_int :

 """VM_int is the main high level Virtual Machine object to

protect a method by remplacing all integer contants

 @param andro : an L{Androguard} / L{AndroguardS} object to

have full access to the desired information

 @param class_name : the class of the method

 @param method_name : the name of the method to protect

 @param descriptor : the descriptor of the method

 @param vm_int_type : the type of the Virtual Machine

 """

 def __init__(self, andro, class_name, method_name, descriptor,

vm_int_type) :

 import vm

www.manaraa.com

71

 method, _vm = andro.get_method_descriptor(class_name,

method_name, descriptor)

 code = method.get_code()

 # LOOP until integers constant !

 iip = True

 while iip == True :

 idx = 0

 end_iip = True

 for bc in code.get_bc().get() :

 if bc.get_name() in _vm.get_INTEGER_INSTRUCTIONS() :

 if vm_int_type == VM_INT_BASIC_MATH_FORMULA :

 vi = vm.VM_int_basic_math_formula(

class_name, code, idx)

 elif vm_int_type == VM_INT_BASIC_PRNG :

 vi = vm.VM_int_basic_prng(class_name, code,

idx)

 else :

 raise("oops")

 for new_method in vi.get_methods() :

 _vm.insert_direct_method(

new_method.get_name(), new_method)

 vi.patch_code()

 end_iip = False

 break

 idx += 1

 # We have patched zero integers, it's the end my friend

!

 if end_iip == True :

 iip = False

 method.show()

class WM :

 def __init__(self, andro, class_name, wm_type) :

 if wm_type == [] :

 raise("....")

 import wm

 self._w = wm.WM(andro.get_vm(), class_name, wm_type,

andro.get_analysis())

 def get(self) :

 return self._w

class WMCheck :

 def __init__(self, andro, class_name, input_file) :

www.manaraa.com

72

 fd = open(input_file, "rb")

 buffxml = fd.read()

 fd.close()

 document = xml.dom.minidom.parseString(buffxml)

 w_orig = wm.WMLoad(document)

 w_cmp = wm.WMCheck(w_orig, andro, andro.get_analysis())

def OBFU_NAMES_GEN(prefix="") :

 return prefix + random.choice(string.letters) + ''.join([

random.choice(string.letters + string.digits) for i in range(10 - 1)

])

OBFU_NAMES_FIELDS = 0

OBFU_NAMES_METHODS = 1

class OBFU_Names :

 """

 OBFU_Names is the object that change the name of a field or a

method by a random string, and resolving

 dependencies into other files

 @param andro : an L{Androguard} object to have full access to

the desired information, and represented a pool of files with the

same format

 @param class_name : the class of the method/field (a python

regexp)

 @param name : the name of the method/field (a python regexp)

 @param descriptor : the descriptor of the method/field (a

python regexp)

 @param obfu_type : the type of the obfuscated (field/method)

(OBFU_NAMES_FIELDS, OBFU_NAMES_METHODS)

 @param gen_method : a method which generate random string

 """

 def __init__(self, andro, class_name, name, descriptor,

obfu_type, gen_method=OBFU_NAMES_GEN) :

 if obfu_type != OBFU_NAMES_FIELDS and obfu_type !=

OBFU_NAMES_METHODS :

 raise("ooops")

 re_class_name = re.compile(class_name)

 re_name = re.compile(name)

 re_descriptor = re.compile(descriptor)

 if obfu_type == OBFU_NAMES_FIELDS :

 search_in = andro.gets("fields")

 elif obfu_type == OBFU_NAMES_METHODS :

 search_in = andro.gets("methods")

 depends = []

 # Change the name of all fields/methods

www.manaraa.com

73

 for fm in search_in :

 if re_class_name.match(fm.get_class_name()) :

 if re_name.match(fm.get_name()):

 if re_descriptor.match(fm.get_descriptor()) :

 _, _vm = andro.get_method_descriptor(

fm.get_class_name(), fm.get_name(), fm.get_descriptor())

 old_name = fm.get_name()

 new_name = gen_method()

 # don't change the constructor for a .class

file

 if obfu_type == OBFU_NAMES_METHODS :

 _, _vm = andro.get_method_descriptor(

fm.get_class_name(), fm.get_name(), fm.get_descriptor())

 if _vm.get_type() == "JVM" and old_name

!= "<init>" :

 fm.set_name(new_name)

 depends.append((fm, old_name))

 elif obfu_type == OBFU_NAMES_FIELDS :

 fm.set_name(new_name)

 depends.append((fm, old_name))

 # Change the name in others files

 for i in depends :

 for _vm in andro.get_vms() :

 if obfu_type == OBFU_NAMES_FIELDS :

 _vm.set_used_field([i[0].get_class_name(),

i[1], i[0].get_descriptor()], [i[0].get_class_name(),

i[0].get_name(), i[0].get_descriptor()])

 elif obfu_type == OBFU_NAMES_METHODS :

 _vm.set_used_method([i[0].get_class_name(),

i[1], i[0].get_descriptor()], [i[0].get_class_name(),

i[0].get_name(), i[0].get_descriptor()])

class BC :

 def __init__(self, bc) :

 self.__bc = bc

 def get_vm(self) :

 return self.__bc

 def get_analysis(self) :

 return self.__a

 def analyze(self) :

 self.__a = analysis.VMAnalysis(self.__bc,

code_analysis=True)

 def _get(self, val, name) :

 l = []

 r = getattr(self.__bc, val)(name)

 for i in r :

www.manaraa.com

74

 l.append(i)

 return l

 def _gets(self, val) :

 l = []

 r = getattr(self.__bc, val)()

 for i in r :

 l.append(i)

 return l

 def gets(self, name) :

 return self._gets("get_" + name)

 def get(self, val, name) :

 return self._get("get_" + val, name)

 def insert_direct_method(self, name, method) :

 return self.__bc.insert_direct_method(name, method)

 def insert_craft_method(self, name, proto, codes) :

 return self.__bc.insert_craft_method(name, proto, codes)

 def show(self) :

 self.__bc.show()

 def pretty_show(self) :

 self.__bc.pretty_show(self.__a)

 def save(self) :

 return self.__bc.save()

 def __getattr__(self, value) :

 return getattr(self.__bc, value)

PROTECT_VM_AUTO = "protect_vm_auto"

PROTECT_VM_INTEGER = "protect_vm_integer"

PROTECT_VM_INTEGER_TYPE = "protect_vm_integer_type"

class Androguard :

 """Androguard is the main object to abstract and manage

differents formats

 @param files : a list of filenames (filename must be

terminated by .class or .dex)

 @param raw : specify if the filename is in fact a raw buffer

(default : False) #FIXME

 """

 def __init__(self, files, raw=False) :

 self.__files = files

 self.__orig_raw = {}

 for i in self.__files :

www.manaraa.com

75

 self.__orig_raw[i] = open(i, "rb").read()

 self.__bc = []

 self._analyze()

 def _iterFlatten(self, root):

 if isinstance(root, (list, tuple)):

 for element in root :

 for e in self._iterFlatten(element) :

 yield e

 else:

 yield root

 def _analyze(self) :

 for i in self.__files :

 #print "processing ", i

 if ".class" in i :

 bc = jvm.JVMFormat(self.__orig_raw[i])

 elif ".jar" in i :

 x = jvm.JAR(i)

 bc = x.get_classes()

 elif ".dex" in i :

 bc = dvm.DalvikVMFormat(self.__orig_raw[i])

 elif ".apk" in i :

 x = apk.APK(i)

 bc = dvm.DalvikVMFormat(x.get_dex())

 else :

 ret_type = androconf.is_Android(i)

 if ret_type == "APK" :

 x = apk.APK(i)

 bc = dvm.DalvikVMFormat(x.get_dex())

 elif ret_type == "DEX" :

 bc = dvm.DalvikVMFormat(open(i, "rb").read())

 else :

 raise("Unknown bytecode")

 if isinstance(bc, list) :

 for j in bc :

 self.__bc.append((j[0], BC(jvm.JVMFormat(j[1])

)))

 else :

 self.__bc.append((i, BC(bc)))

 def ianalyze(self) :

 for i in self.get_bc() :

 i[1].analyze()

 def get_class(self, class_name) :

 for _, bc in self.__bc :

 if bc.get_class(class_name) == True :

 return bc

 return None

www.manaraa.com

76

 def get_raw(self) :

 """Return raw format of all file"""

 l = []

 for _, bc in self.__bc :

 l.append(bc._get_raw())

 return l

 def get_orig_raw(self) :

 return self.__orig_raw

 def get_method_descriptor(self, class_name, method_name,

descriptor) :

 """

 Return the specific method

 @param class_name : the class name of the method

 @param method_name : the name of the method

 @param descriptor : the descriptor of the method

 """

 for file_name, bc in self.__bc :

 x = bc.get_method_descriptor(class_name, method_name,

descriptor)

 if x != None :

 return x, bc

 return None, None

 def get_field_descriptor(self, class_name, field_name,

descriptor) :

 """

 Return the specific field

 @param class_name : the class name of the field

 @param field_name : the name of the field

 @param descriptor : the descriptor of the field

 """

 for file_name, bc in self.__bc :

 x = bc.get_field_descriptor(class_name, field_name,

descriptor)

 if x != None :

 return x, bc

 return None, None

 def get(self, name, val) :

 """

 Return the specific value for all files

 @param name :

 @param val :

 """

 if name == "file" :

 for file_name, bc in self.__bc :

www.manaraa.com

77

 if file_name == val :

 return bc

 return None

 else :

 l = []

 for file_name, bc in self.__bc :

 l.append(bc.get(name, val))

 return list(self._iterFlatten(l))

 def gets(self, name) :

 """

 Return the specific value for all files

 @param name :

 """

 l = []

 for file_name, bc in self.__bc :

 l.append(bc.gets(name))

 return list(self._iterFlatten(l))

 def get_vms(self) :

 return [i[1].get_vm() for i in self.__bc]

 def get_bc(self) :

 return self.__bc

 def show(self) :

 """

 Display all files

 """

 for _, bc in self.__bc :

 bc.show()

 def pretty_show(self) :

 """

 Display all files

 """

 for _, bc in self.__bc :

 bc.pretty_show()

 def do(self, fileconf) :

 self.ianalyze()

 fd = open(fileconf, "rb")

 buffxml = fd.read()

 fd.close()

 document = xml.dom.minidom.parseString(buffxml)

www.manaraa.com

78

 main_path = document.getElementsByTagName("main_path"

)[0].firstChild.data

 libs_path = document.getElementsByTagName("libs_path"

)[0].firstChild.data

 if document.getElementsByTagName("watermark") != [] :

 watermark_item = document.getElementsByTagName(

"watermark")[0]

 watermark_types = []

 for item in watermark_item.getElementsByTagName("type"

) :

 watermark_types.append(str(item.firstChild.data)

)

 watermark_output = watermark_item.getElementsByTagName(

"output")[0].firstChild.data

 print watermark_types, "--->", watermark_output

 fd = open(watermark_output, "w")

 fd.write("<?xml version=\"1.0\"?>\n")

 fd.write("<andro id=\"androguard wm\">\n")

 wms = []

 for i in self.get_bc() :

 for class_name in i[1].get_classes_names() :

 wm = WM(i[1], class_name, watermark_types)

 fd.write(wm.get().save())

 fd.write("</andro>\n")

 fd.close()

 if document.getElementsByTagName("protect_code") != [] :

 import protection

 protect_code_item = document.getElementsByTagName(

"protect_code")[0]

 protection.ProtectCode([i[1] for i in self.get_bc()],

main_path + libs_path)

for item in document.getElementsByTagName('method') :

if item.getElementsByTagName(PROTECT_VM_INTEGER

)[0].firstChild != None :

if item.getElementsByTagName(PROTECT_VM_INTEGER

)[0].firstChild.data == "1" :

vm_type = INVERT_VM_INT_TYPE[

item.getElementsByTagName(PROTECT_VM_INTEGER_TYPE

)[0].firstChild.data]

VM_int(self, item.getAttribute('class'),

item.getAttribute('name'), item.getAttribute('descriptor'), vm_type

)

 if document.getElementsByTagName("save_path") != [] :

 self.save(main_path + document.getElementsByTagName(

"save_path")[0].firstChild.data)

www.manaraa.com

79

 else :

 self.save()

 def save(self, output_dir=None) :

 for file_name, bc in self.get_bc() :

 if output_dir == None :

 output_file_name = file_name

 else :

 output_file_name = output_dir + os.path.basename(

file_name)

 print "[+] [AG] SAVING ... ", output_file_name

 fd = open(output_file_name, "w")

 fd.write(bc.save())

 fd.close()

class AndroguardS :

 """AndroguardS is the main object to abstract and manage

differents formats but only per filename. In fact this class is just

a wrapper to the main class Androguard

 @param filename : the filename to use (filename must be

terminated by .class or .dex)

 @param raw : specify if the filename is a raw buffer (default

: False)

 """

 def __init__(self, filename, raw=False) :

 self.__filename = filename

 self.__orig_a = Androguard([filename], raw)

 self.__a = self.__orig_a.get("file", filename)

 def get_orig_raw(self) :

 return self.__orig_a.get_orig_raw()[self.__filename]

 def get_vm(self) :

 """

 This method returns the VMFormat which correspond to the

file

 @rtype: L{jvm.JVMFormat} or L{dvm.DalvikVMFormat}

 """

 return self.__a.get_vm()

 def save(self) :

 """

 Return the original format (with the modifications) into

raw format

 @rtype: string

 """

 return self.__a.save()

www.manaraa.com

80

 def __getattr__(self, value) :

 try :

 return getattr(self.__orig_a, value)

 except AttributeError :

 return getattr(self.__a, value)

 Androlyze.py

import sys, os, cmd, threading, code, re

from optparse import OptionParser

from androguard import *

from bytecode import *

from jvm import *

from dvm import *

from apk import *

from analysis import *

from diff import *

from msign import *

import androconf

import IPython.ipapi

from IPython.Shell import IPShellEmbed

from cPickle import dumps, loads

option_0 = { 'name' : ('-i', '--input'), 'help' : 'file : use this

filename', 'nargs' : 1 }

option_1 = { 'name' : ('-d', '--display'), 'help' : 'display the

file in human readable format', 'action' : 'count' }

option_2 = { 'name' : ('-m', '--method'), 'help' : 'display

method(s) respect with a regexp', 'nargs' : 1 }

option_3 = { 'name' : ('-f', '--field'), 'help' : 'display field(s)

respect with a regexp', 'nargs' : 1 }

option_4 = { 'name' : ('-s', '--shell'), 'help' : 'open an

interactive shell to play more easily with objects', 'action' :

'count' }

option_5 = { 'name' : ('-v', '--version'), 'help' : 'version of the

API', 'action' : 'count' }

option_6 = { 'name' : ('-p', '--pretty'), 'help' : 'pretty print !',

'action' : 'count' }

option_7 = { 'name' : ('-t', '--type_pretty'), 'help' : 'set the

type of pretty print (0, 1) !', 'nargs' : 1 }

option_8 = { 'name' : ('-x', '--xpermissions'), 'help' : 'show paths

of permissions', 'action' : 'count' }

www.manaraa.com

81

options = [option_0, option_1, option_2, option_3, option_4,

option_5, option_6, option_7, option_8]

def save_session(l, filename) :

 """

 save your session !

 @param l : a list of objects

 @param filename : output filename to save the session

 """

 fd = open(filename, "w")

 fd.write(dumps(l, -1))

 fd.close()

def load_session(filename) :

 """

 load your session !

 @param filename : the filename where the sessions has been

saved

 @rtype : the elements of your session

 """

 return loads(open(filename, "r").read())

def interact() :

 ipshell = IPShellEmbed(banner="Androlyze version %s" %

androconf.ANDROGUARD_VERSION)

 ipshell()

def AnalyzeAPK(filename, raw=False) :

 """

 Analyze an Android application and setup all stuff for a

more quickly analysis !

 @param filename : the filename of the Android application or

a buffer which represents the application

 @param raw : True is you would like to use a buffer

 @rtype : return the APK, DalvikVMFormat, and VMAnalysis

objects

 """

 a = APK(filename, raw)

 d = DalvikVMFormat(a.get_dex())

 dx = VMAnalysis(d)

 ExportVMToPython(d)

 set_pretty_show(1)

 return a, d, dx

www.manaraa.com

82

def AnalyzeDex(filename, raw=False) :

 """

 Analyze an Android dex file and setup all stuff for a more

quickly analysis !

 @param filename : the filename of the Android dex file or a

buffer which represents the dex file

 @param raw : True is you would like to use a buffe

 @rtype : return the DalvikVMFormat, and VMAnalysis objects

 """

 d = None

 if raw == False :

 d = DalvikVMFormat(open(filename, "rb").read())

 else :

 d = DalvikVMFormat(raw)

 dx = VMAnalysis(d)

 ExportVMToPython(d)

 set_pretty_show(1)

 return d, dx

def sort_length_method(vm) :

 l = []

 for m in vm.get_methods() :

 code = m.get_code()

 if code != None :

 l.append((code.get_length(), (m.get_class_name(),

m.get_name(), m.get_descriptor())))

 l.sort(reverse=True)

 return l

def main(options, arguments) :

 if options.shell != None :

 interact()

 elif options.input != None :

 _a = AndroguardS(options.input)

 if options.type_pretty != None :

 bytecode.set_pretty_show(int(options.type_pretty))

 if options.display != None :

 if options.pretty != None :

 _a.ianalyze()

 _a.pretty_show()

 else :

 _a.show()

www.manaraa.com

83

 elif options.method != None :

 for method in _a.get("method", options.method) :

 if options.pretty != None :

 _a.ianalyze()

 method.pretty_show(_a.get_analysis())

 else :

 method.show()

 elif options.field != None :

 for field in _a.get("field", options.field) :

 field.show()

 elif options.xpermissions != None :

 _a.ianalyze()

 perms_access = _a.get_analysis().get_permissions([])

 for perm in perms_access :

 print "PERM : ", perm

 for path in perms_access[perm] :

 print "\t%s %s %s (@%s-0x%x) ---> %s %s %s" % (

path.get_method().get_class_name(), path.get_method().get_name(),

path.get_method().get_descriptor(), \

path.get_bb().get_name(), path.get_bb().start + path.get_idx(), \

path.get_class_name(), path.get_name(), path.get_descriptor())

 elif options.version != None :

 print "Androlyze version %s" % androconf.ANDROGUARD_VERSION

if __name__ == "__main__" :

 parser = OptionParser()

 for option in options :

 param = option['name']

 del option['name']

 parser.add_option(*param, **option)

 options, arguments = parser.parse_args()

 sys.argv[:] = arguments

 main(options, arguments)

www.manaraa.com

84

7.2 Appendix 2: SimHash Code.

 SimHash

import re

import Hashlib

class SimHash(object):

 def __init__(self, value):

 self.f = 64

 self.reg = ur'\w+'

 self.value = None

 if isinstance(value, list):

 self.build_by_features(value)

 elif isinstance(value, long):

 self.value = value

 elif isinstance(value, SimHash):

 self.value = value.Hash

 else:

 self.build_by_text(value)

 def _slide(self, content, width=2):

 return [content[i:i+width] for i in xrange(len(content)-

width+1)]

 def _tokenize(self, content):

 ans = []

 content = ''.join(re.findall(self.reg, content))

 ans = self._slide(content)

 return ans

 def build_by_text(self, content):

 features = self._tokenize(content)

 return self.build_by_features(features)

 def build_by_features(self, features):

 print features

 Hashs = [int(Hashlib.md5(w.encode('utf-8')).hexdigest(),

16) for w in features]

 v = [0]*self.f

 for h in Hashs:

 for i in xrange(self.f):

 mask = 1 << i

 v[i] += 1 if h & mask else -1

 ans = 0

 for i in xrange(self.f):

 if v[i] >= 0:

 ans |= 1 << i

 self.value = ans

www.manaraa.com

85

 def distance(self, another):

 x = (self.value ^ another.value) & ((1 << self.f) - 1)

 ans = 0

 while x:

 ans += 1

 x &= x-1

 return ans

7.3 Appendix 3: Test Code.

 Test1 Androguard:

import datetime

import sys

from optparse import OptionParser

import androguard, androconf, diff

myfile=open('testty','w')

for x in range(101, 130):

 c = androguard.Androguard(['./apk/'+str(x)+'.apk'])

 c.ianalyze()

 vm1 = c.get_bc()[0][1].get_vm()

 vmx1 = c.get_bc()[0][1].get_analysis()

 for y in range(x+1, 130):

 a = datetime.datetime.now()

 d = androguard.Androguard(['./apk/'+str(y)+'.apk'])

 d.ianalyze()

 vm2 = d.get_bc()[0][1].get_vm()

 vmx2 = d.get_bc()[0][1].get_analysis()

 dsim = diff.Sim([vm1, vmx1], [vm2, vmx2])

 print "compares "+str(x)+" with "+str(y) +"RESULT=

"+str(dsim.get_final_score())

 b = datetime.datetime.now()

 myfile.write("distance between "+str(x)+" and "+str(y)+ "

is "+str(dsim.get_final_score())+" time= "+str(b-a)+"\n")

 if not(d is None):del d

 if not (vm2 is None): del vm2

 if not (vmx2 is None): del vmx2

 if not (dsim is None):del dsim

 if not (c is None):del c

 if not (vm1 is None): del vm1

www.manaraa.com

86

 if not (vmx1 is None): del vmx1

 Test2 SimHash:

from simHash import SimHash

import datetime

myfile=open('testt','w')

for x in range(22, 130):

 for y in range(x+1, 130):

 a = datetime.datetime.now()

 f=open("../../apk/"+str(x)+".apk_FILES (2)/classes.dex",

mode='rb')

 test = f.read()

 #test="hddhhfffh";

 f=open("../../apk/"+str(y)+".apk_FILES (2)/classes.dex",

mode='rb')

 test1 = f.read();

 #test1="hddhhfffhf";

 #print lines;

 #a= SimHash(lines).value;

 #b= SimHash('How are you? I am vey fine. Thanks alot but

what about ypou and father .').value;

 #print '%x' %a

 #print '%x' %b

 xx=SimHash(test)

 yy=SimHash(test1)

 #print xx.value

 #print yy.value

 aa=bin(xx.value)

 bb=bin(yy.value)

 #print aa

 #print bb

 z= xx.value ^ yy.value

 #print bin(z)

 #print x

 print "compares "+str(x)+" with "+str(y)

 b = datetime.datetime.now()

 dd=xx.distance(yy)

 xxx=(1.00000-(dd/64.00000))*100

 myfile.write("similarity between "+str(x)+" and "+str(y)+

" is "+str(xxx)+" time= "+str(b-a)+"\n")

